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DESCRITON OF PROGRESS

TASK 1.0: COMPARATIVE TECHNOLOGY ASSESSMENT

This task is essentially complete, but we are continuing to monitor progress in other

technologies as they relate to the goals of this program.

TASK 2.1: INTEGRATED SUBSYSTEM SPECIFICATIONS

Part of this task is to determine how the HTS channelized filterbank can be most

effectively demonstrated. Preferably the demonstration should be accomplished in the

context of an actual ESM receiver rather than as a laboratory demonstration using

laboratory instrumentation. We have identified a demonstration vehicle which will

provide this capability:- Wqstphtxsr, using internal R&D funding, has developed and

demonstrated a videband ekanne~fled receiver with twenty, 100 MHz channels that

operates over the 3 to 5 Glz frequency range. This receiver is capable of detecting and

correctly-.determiiining'the frequenicy Qf up to three simultaneous signals, even when they

have simultaneous leading edges.

The HTS filterbank being developed under this program is designed to opmte right

in the middle of this frequency range (4 GHz) and it has been determined that the filter

characteristics and parameters of the two channelizers are simila enough to be compatible

with the encoder algorithms. The channelized receiver's log video detectors, A/Ds, and

digital excd1def air also compatible with the HTS channelizer design.

Thus the components for a demonstration of the HTS filterbank can be made

available and a realistic demonstration can be conducted at a very reasonable cost.



TASK 2.2: FUNCTIONAL COMPONENT AND SUBSYSTEM DESIGN,
FABRICATION AND TESTING

Filterbanks

. Wide-Band Coupler Design

A wide band 90 coupler has been designed. This component is needed for the

implementation of the HTS filterbank. Our original plans called for a Lange coupler

design. However, due to the high dielectric constant of the LAO substrate, a 3 dB Lange

coupler would have very narrow and long lines, posing a high risk on its fabrication. For

example, a 4-finger Lange coupler requires lines 1.7 um wide and almost 0.5 cm long,

with 9.4 I= spacings. This was considered to be too risky from a fabrication yield

standpoint. Instead, two 8.34 dB quarter-wave couplers in tandem will be used. The

coupler layout is shown schematically in Figure 1(a). Figure 1(b) shows the designed

dimensions for each coupler for a LAO substrate 0.025-cm (10 mils) thick. The

separation between couplers is not critical, only that it be sufficiently wide to avoid

spurious interactions between couplers. Thus, the total coupler is approximately as wide

as the branch-line hybrid we have used to date on the parallel HTSSE-ll program, but

about half as long. The tandem coupler was designed using the microwave circuit design

software Touchstone and later adjusted using the electromagnetic analysis software emTm,

from Sonnet. rhe analyzed performance is shown in Figures 2(a) and 2(b). Refer to

Figure 1(a) for the port labels.

. Filter Design

All the filterbank technology developed in this program to date has been directly

demonstrated in the parallel Navy program HTSSE-IL The filterbank requirements of this

ONR/ARPA program are somewhat different in that, instead of Chebychev filter

characteristics, a quasi-cos3 passband shape is to be used in order to demonstrate the

technology in EW system applications. These filters have been electrically designed, and

their characteristics analyzed in the context of an EW channelized receiver. This has been
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Figure 1. Tandem couplers. Each is a 8.34-dB parallel-coupled line coupler. In
tandem they provide a 3 dB coupler over almost an octave bandwidth. (a)
Schematic layout. (b) Dimensions for each coupler.
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Figure 2. Design and Sonnet analysis of the tandem coupler performance.
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previously reported in our interim report covering the period between July 1991 and

July 1992. The geometrical design of the first channel is now nearly complete. This a

seven-pole, quarter-wave parallel-coupled section filter on a 0.025-cm thick LAO

substrate. The design is complicated by the fact that the conventional design software is

inadequate to perform this task, as explained in our last quarterly report. A design

procedure is being developed in which Sonnet is included in the design loop. Although

the procedure is not yet optimized for speed, it is possible to obtain suitable designs with

it. The steps employed are the following:

a) Design the filter with Touchstonelh (or equivalent) to obtain a first set of

coupling gaps and average coupling lengths.

b) Using Sonnetm at frequency points of interest construct a table of coupling

gaps versus frequency for the average coupling length obtained in step a).

c) Knowing the required couplings from the impedance model of the filter,

interpolate the table to find the corresponding gap for each section.

d) Analyze the resulting filter using Sonnet. This is the first iteration. The center

frequency is usually different from that desired.

e) From the frequency offset, compute a length correction for each coupling

section.

f) Repeat step b) using the new average coupling length.

g) Repeat steps c), d) and e).

This design procedure is still being refined but has yielded reasonably good designs

for the Chebychev filters of the HTSSE-H program. Experimental results on these filters

will be obtained in the next reporting period.
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* Fabrication and Testing of Thin-Film rf Terminations

In the previous report, the need for an integrated 50 0 load resistor to properly

terminate the 180 out-of-phase port from each filterbank channel was described. A

process for fabricating these thin film resistors was defined and a mask set to test the

fabrication process was designed in the previous period as well. During the current

reporting period, this mask set was used in processing two two-inch wafers to produce

thin-film loads and associated test patterns. A diagram of the chip layout for this mask set

is given in Figure 3. Twelve thin-film load structures from these two wafers were tested

over the frequency range 2 to 6 GHz. Also measured after processing were the YBCO

surface resistance at 10 GHz and dc properties of YBCO and the load resistor material.

The starting substrate for fabricating the components shown in Figure 3 was a

LaAI0 3 wafer (0.05 cm thick) on which an epitaxial layer of YBCO (0.4 am thick) had

been grown by off-axis sputtering at Westinghouse STC. The processing sequence

proceeded as follows. Au contacts to the YBCO were defined by lift-off with 200 nm Au

deposited by sputtering. The contacts were annealed in flowing oxygen for one hour at

550 C to promote adhesion and to provide sufficiently low contact resistance. The

YBCO was patterned as transmission lines to the thin-film loads and for various test

structures by Ar ion milling. The resistor structure, also defined by lift-off, consisted of

86 nm Mo capped with 10 nm Ti and had a target sheet resistance of 1.0 WlO at 77 K. The

Ti capping layer serves to protect the Mo resistor material from oxidation by atmospheric

oxygen. The final layer on the front of the substrate was sputtered Ti/Au (20 n=1200 nm),

defined by lift-off, where the Ti promotes adhesion and the Au provides a surface to

which wire bonds can be made for the test patterns. This layer was used to connect one

end of the thin-film load resistor to the YBCO transmission line and the other end of the

resistor to the Ti/Au capacitor electrode which provides an ac path to the ground plane on

the back of the wafer. The ground plane was created by sputter-depositing Cr/Au

(20 nm/200 nm) on the LaAIO 3 substrate and then plating an additional 2 am of Au onto

the sputtered Au. The wafer was then sawed into eleven chips for testing.
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Figure 3. Diagram of layout of thin-film load structures (three chips in center column), test pieces for
measurement of surface resistance after processing (four blank rectangular chips), and test patterns for
measuring dc properties of YBCO and the thin-film Mo/Ti resistors (remaining four chips) on a two-inch
wafer.
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Measurements of the reflection coefficient (S 11) for all twelve thin film loads from

the two wafers indicated that these loads were performing adequately as termination

resistors for the out-of-phase port. The measurements are tabulated in Table 1 as the

magnitude of the S 11 coefficient given as a range between 2 and 6 GHz and at 4 GHz.

These results are quite adequate for providing a termination to leakage signals at the out-

of-phase port of the output 90 coupler in each channel.

However, two significant problems surfaced during the processing of these two

wafers. The more serious problem is the contamination of the YBCO by the plating

solution during the Au plating of the ground plane. The front (YBCO) side of the wafer

was protected from the plating solution by a double layer of photoresist. Plating was done

using a cyanide-based commercial plating bath (Sel-Rex Pur-A-Gold 401) at 50 C with a

plating current of 10 mA for 60 minutes. The photoresist was unable to withstand attack

by the heated plating bath for this extended time and broke down in numerous small

(= 3 um) regions. This resulted in damage to the YBCO in these localized areas as seen

with an optical microscope or with an SEM. As described later, this problem was solved

by optimizing the plating conditions in subsequent runds. The second problem involved

the inability to lift off all sputtered Au prior to the contact anneal. In cases where isolated

small islands of photoresist were defined, such as the interior of the letter "0" in a label or

the region between very finely spaced (< 2 pm) lines in a lithography test pattern, the

sputtered Au effectively encapsulated and sealed these photoresist islands, thereby

preventing the photoresist solvent from dissolving these islands during the lift-off step.

Consequently, some photoresist was trapped beneath Au on the wafer during the Au

anneal at 550 C. This trapped photoresist could have been released during the anneal and

acted as a source of contamination for the YBCO.

Measurements of dc properties of the YBCO film using test chips from the thin-film

load wafer confirmed that the YBCO had been degraded electrically. The room

temperature resistivity was 640 auf-cm, approximately twice the value typically obtained

for as-deposited YBCO. The critical temperature was 79.5 K, approximately 7 K lower
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than desired, while the critical current density at 73 K was 2.5 x 105 A/cm 2 ,

approximately one-fourth the expected value. These three values are consistent with a

degraded YBCO film, probably a consequence of its contact with the plating solution

and/or the presence of trapped photoresist on the wafer during the contact anneal. The

sheet resistance of the MoTi resistor was 2.24 0/W at room temperature and 1.18 WO at

72 K, a value which would give an acceptable 59 01 for the nominally 50 11 load resistor.

The contact resistance associated with the interface between the annealed Au and the

YBCO was measured to be 8.0 x 10-6 fl-cm2 at 75 K, also an acceptable value, and found

to be ohmic (linear I-V curve). In spite of the problems with the degraded YBCO, this

fabrication run and the associated measurements indicated that the concept of an

integrated thin-film load resistor was a valid and realizable one. The YBCO transmission

lines from the output connectors to the terminations themselves were therefore lossier than

desired and this might, in principle, produce higher return losses when measuring the

performance of the terminations. However, these were only a few millimeters long and so

their effect on the measurements is expected to have been negligible.

• Fabrication of First Two Wafers for HTSSE-I Filters*

The wafer processing techniques being developed under this program were

evaluated and further refined by using the HTSSE-II filters as test vehicles. Based on the

results of the thin-film load fabrication run, a set of seven masks for the four channels in a

channelized filterbank for HTSSE-II was designed at Westinghouse STC and fabricated

by Micro Mask, Inc. The layout for the channel 1 filter, transition chips for

interconnecting filter channels, and associated test patterns are shown in Figure 4. An

expanded view of the dc test patterns that appear in this layout is given in Figure 5. In

order to avoid trapping photoresist beneath the contact Au (as occurred for the thin-film

*The design, layout, and mask fabrication for the filters were supported by NRL as part of
the HTSSE-I1 program, while the process development was part of the ARPA/ONR
program, including development of the test patterns.
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Figure 4. Diagram of layout of channel I filter (center) including the thin-film load structure (right),
transition chips to facilitate connection of filter channels within a common package (lower left and upper right
chips), test pieces for measurement of surface resistance after pmcessing (two blank rectangular chips at top
and bottom), and test patterns for measuring dc properties of YBCO and the thin-film MoITi resistors (lower
right and upper left chips) on a two-inch wafer.
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Figure 5. Expanded view of dc test patterns for measuring sheet resistance of Mo/ci resistor at room
temperature and at 77 K (upper right), sheet resistance at room temperature of YBCO and critical temperatur
and critical current density of YBCO at 77 K (lower right), and contact resistance between annealed Au and
YBCO at 77 K (left).
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load run), all isolated photoresist islands were eliminated from the contact mask level.

Only the essential contacts themselves and the alignment marks remained on this mask.

The process sequence used in this fabrication is detailed in Table 2. It is similar to

that employed in the thin-film load fabrication, except that the deposition of the ground

plane by sputtering and plating is now the second major step in the process instead of the

last step. In order to avoid breakdown of the photoresist layer which protects the front

(YBCO) side of the wafer during plating, the plating time was reduced from 60 minutes to

30 minutes and the plating current was increased from 10 mA to 50 mA. This gives a

plated Au thickness of = 4 jum.

The most important parameter for the successful fabrication of a YBCO filter is the

surface resistance. This parameter, measured at 77 K and normalized to 10 GHz, must be

less than 5 mra. As long as the YBCO film is unpatterned, the surface resistance can be

measured using a cavity resonator (end-wall replacement technique). Referring to

Table 2, this means that the surface resistance can be monitored through the contact anneal

step and through the ground plane plating step, arguably the steps most likely to cause

degradation in the surface resistance. In addition, upon completion of the processing the

wafer is sawed into its respective chips, including two 1/4" x 1/2" rectangles of

unpattemed YBCO (Figure 4). These rectangular pieces can be placed in a parallel plate

resonator to determine the surface resistance after the processing is complete.

Two substrates, each comprising a LaAIO 3 wafer (0.05 cm thick) on which an

epitaxial layer of YBCO (0.4 jim thick) had been grown by off-axis sputtering at

Westinghouse STC, have undergone the process sequence summarized in Table 2 and

have been diced into chips. Surface resistance measurements were made at various steps

in the process. Within experimental error, R. was unaffected by the process and both

wafers emerged from the entire process sequence with quite low values of surface

resistance (0.7 mil and 1.4 maf), thereby demonstrating the ability of the process to

preserve low values of surface resistance. There was no physical evidence of degradation

to the YBCO surface, suggesting that the protective photoresist layer did not succumb to

14
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Table 3. Results of Test Chip for Filter Fabrication

Run Filter- 1

Wafer W93-019

YBCO Film (nominally 10 Itm wide and 0.4 pm thick):
Sheet resistance at room temperature: 7.5 WO/O (300 pDfl-cm)
Critical temperature after four-mask level process: 87.0 K
Critical current at 77 K: 42 mA (I.0 x I0b A/cm2 )

Mo/Ti Resistor (nominally 760 Ai/10 A from Nordiko 2100):
Sheet resistance at room temperature: 2.31 £2/O
Sheet resistance at 77 K_ 1.40 =II!
Ratio (RTiLN) of sheet resistance: 1.65

Contact Resistance of Au annealed into YBCO:
Au annealing conditions: ramp to 550WC in 1 hour, then turn furnace off (flowing 02)
Size of contact stipe: 10 pm x 50 pin
Contact is ohmic (linear I-V) up to 62 mA
Contact resistance at 77 K 1.0 W/contact (1.0 x 10-6 (-cm 2 )
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the plating bath during the reduced (30 minute) plating time. Results of dc measurements

from the test chip (Figure 5) for wafer W93-019 are listed in Table 3. All parameters are

on-target, reinforcing the indication from surface resistance measurements that the YBCO

remains of high quality In addition, the Au/YBCO interface has low contact resistance

(1.0 x 10-6 0-cm2 ) and the Mo/Ti resistor material has acceptable sheet resistanc at 77 K

(1.40 WA)). Measurements of the channel I and channel 2 filter characteristics at 77 K for

these two wafers will be included in the next report.

• Integrated Packaging

The last report explained some of the package concepts being developed for the

channelizer, principally the use of niobium as the thermal expansion matched carrier

material for substrate mounting, and the use of spring contacts instead of indium-based

solders to secure and contact the carrier to the aluminum package housing. Designs

incorporating these features were completed during the current reporting period, and

machining of parts was begun. TIe complexity of the package parts is accommodated by

using numerically controlled milling. Identical packages will be used for the channelizers

being fabricated for both programs, and this commonality results in cost and time savings.

Delay Lines

. Indium Diffusion Barrier Experiments

Further experinents on the need to use In diffusion barriers have revealed no

contamination of the YSCO through the annealed Au contact layer. A set of rectangular

LaAIO 3 samples 1/2" x 1/4" with YBCO on one side was coated on the same side with

200 nm of sputtered Au. The samples were then annealed in flowing oxygen for 1 hour at

550 * C in order to provide a low contact resistance between the gold and the YBCO.

These samples were subsequently subjected to a simulated In soldering to a Nb carrier,

using temperatures 10 to 20 C higher than the actual solder* g process temperature of

150 C. Using a separate sample "f the sanm size, a microstrip resonator was defined on

17



the YBCO by ion milling. By laying this sample with the resonator side in contact with

the bare side of the test YBCO/Au samples, the quality factor of the microstrip resonators

was measured, with the YBCO/Au as the ground plane. This measurement was done

before and after the YBCO/Au side was subjected to the In soldering process. In both

cases a Q of several thousand was measured for the two samples processed. Inductive Tc

measurements were also performed, which showed no degradation at all from the contact

with In through the gold layer at the process temperature. We conclude then that the

contact gold layer is sufficient to prevent degradation of the YBCO by the In at the

processing temperature of 150 C. This will be tested in an actual delay line in the next

reporting period.

. Fabrication and Packaging

A delay line package design was completed which incorporates features for

obtaining and holding the required alignment of top and bottom mirror image spirals.

This alignment procedure entails registration of fiducial markings on the top and bottom

substrates which are photolithographically defined at the same time as the delay line spiral

itself. To allow these markings to be viewed for the alignment, small holes in the ground

plane layers on the back sides of each substrate are also photolithographically produced,

these holes being in registration with the fiducial marks on the front sides. The marks can

thus be viewed through the transparent substrate to allow the required registration to be

accomplished. Mating holes in the substrate carriers allo an unobstructed optical path,

and an alignment jig allows both translation and rotation of one of the substrate carriers

relative to the other, while pressure is maintained to keep the substrates in good contact.

When alignment is achieved, pins connecting the carriers will be epoxied in place to fix

the carriers from moving in translation, and substrate contact pressure will be maintained

by nuts and bellville washers on these pins. Ground plane contact between the back sides

of the substrates will be accomplished by a spring contact spiral at the periphery of the

18



substrates, between the carriers. The aligned assembly will then be inserted into an

aluminum housing in a similar manner to the filter carrier insertion into the channelizer.

Parts are in process of machining for the delay lines, and a test of the whole

alignment procedure and of the delay line itself will occur in the next quarter.

TASK 3.1: PVD MULTILAYER FILM FABRICATION

The two subtasks scheduled for this reporting period required delivery of YBCO

films on both sides of two-inch diameter substrates to Task 2.2, and development of a

multilayer deposition capability on four-inch wafers.

A production schedule was charted in April, 1993, for this program and HTSSE 1I

which called for approximately 80 two-inch diameter wafers to be coated with 400 nm

thick YBCO films on one or both sides between May and October, 1993. So far, film

production has stayed ahead of fabrication requirements. As mentioned in previous

reports, the only variable in the production process that has prevented a 100% film yield is

the homogeneity of YBCO sputtering targets. The problem encountered with

approximately one out of five targets is that the plasma becomes concentrated on a target

inhomogeneity and bums a hole in the target during its first use. The evaporated material

from such a hole is not stoichiometric and films produced from such targets must be

stripped off and the substrate recycled. During this quarter, we met with the two primary

vendors of YBCO targets to discuss our requirements and reduce the number of targets

returned to them. Several new types of targets made from different starting powders were

obtained from each vendor and will be evaluated in December, 1993.

As production of filter channels and delay lines proceeded during this quarter, spot

checks of Rs were discontinued in favor of Rs measurements made during processing of

devices to ensure that process steps did not degrade film quality. In the case of filter

channels, the completed device contained test chips on which Rs could be measured.

These measurements provided sufficient feedback to the film production process to show

that Rs-qualified films were being supplied.
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As in the previous quarter, a very low level of effort was expended in the

development of YBCO-coated four-inch wafers using a new sputtering chamber built to a

Westinghouse design by Nordiko Ltd., which can accommodate 2, 3, or 4-inch wafers.

Although modifications to the thermal design had reduced the heater power needed to

maintain the desired substrate temperature from an initial value of 70% to less than 30%

of the heater's 2.6 kW maximum, rotary feedthroughs in the vicinity of the heater were

overheating during long deposition sequences. Nordiko re-designed these feedthroughs so

they are water-cooled, rebuilt them, and delivered them to Westinghouse in August, 1993.

The modified feedthroughs were found to be poorly designed, leading to vacuum leaks

and loss of the ability to monitor wafer temperature during growth. Nordiko has agreed to

redesign and build suitable feedthroughs.

TASK 3.2: MOCVD MULTILAYER FILM FABRICATION

Work under this task was performed at EMCORE on YBCO film growth, at

Northwestern University on the development of new Ba precursors for YBCO and growth

of epitaxial insulating films, and at Westinghouse STC where measurements were made of

the rf surface resistance of YBCO films. However, during this reporting period no YBCO

films were delivered to Westinghouse so no Rs measurements were performed.

Northwestern University has fabricated three generations of Ba precursors during

the course of this program. Film growth and Ba transport were demonstrated with the

third-generation precursors, bis(tri-butylcyclo-pentadienyl)bariumn, (CptBu3)2 Ba, and

bis(di-butylcyclo-pentadienyl)barium, (CptBu2 )2 Ba. These precursors appear to

successfully address all of the requirements for MOCVD of Ba compounds and represent

a successful conclusion to this part of the program. A preprint is attached as Appendix A.

TASK 3.3: RF CHARACTERIZATION OF FILM PROPERTIES

Three techniques continue to be used for Rs measurements. The most important

one for this program is a cylindrical copper cavity designed for two-inch diameter wafers
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(end-wall replacement technique). Some refinements to the measurement technique were

implemented during this reporting period to eliminate potential degradation of the sample

by scratches, dust, or grease.

The other technique for Rs measurement of 2-inch wafers is the dielectric resonator

used in the STALO program. Although it is not preferred to the cavity with end-wall

replacement for screening films, it does provide feedback to the same deposition process

as used for this program.

The third technique is a parallel-plate resonator using a pair of 1/2 inch x 1/4 inch

unpatterned films. When there is room on a wafer that is processed for other purposes (for

example, tests of thin-film loads), chips of this size are cut from the wafer after processing

is complete and measured to determine whether any change in Rs occurred due to

processing.

TASK 5.0: SWITCHED FILTERBANK

The schedule shown below is for the development and testing of the etched back

FET switch which is the primary product of the first phase of the flow-through switched

filterbank add-on to the current program. It indicates that if the first switch run is

successful we will be well ahead of schedule.

DESIGN COMPLETED 12/03/93

MASK COMPLETED 12/17/93

1ST PROCESS RUN COMPLETED 2/28/94

TESTING COMPLETED 3/14/94

REDESIGN, NEW FABRICATION & TEST (IF NECESSARY) 6/14/94
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PROBLEMS ENCOUNTERED AND/OR ANTICIPATED

Although the start date of this program was July 24, 1991 with the approval of

anticipatory spending, the contract was not signed until September 30, 1991 when the first

increment of funding was received. The work effort was slowed at DARPA's request to

stretch the FY92 funding through 12/31/92. However, FY93 funds were not received

until March 30, 1993. These funding limitations will place the program at least six

months behind schedule.
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FISCAL STATUS

Amount currently provided $3,516,013

Expenditures and commitments through 10/24/93: 2,965,184

Funds required to complete: 2,999,223

FY94 funds required: 2,300,000

*Includes $437,400 committed to subcontractors and purchase orders.
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